#PROJECT-7: Analysis of Assets Under Management(AUM) of Indian Mutual Funds

knitr::opts_chunk$set(root.dir = "C:/Users/rsman/Documents/PERS FOLDERS/RAJDEEP/WEB SITE/Project-7-AUM-FII")
library(pander)
library(xlsx)
library(ggplot2)
library(scales)
library(dplyr)
library(kableExtra)
library(DT)
library(jpeg)

getwd()
## [1] "C:/Users/rsman/Documents/PERS FOLDERS/RAJDEEP/WEB SITE/Project-7-AUM-FII"

Project Description

  1. The Assets Under Management(AUM) is an indicator of the total funds in a scheme:-
  1. There are a total of five kinds of investors, namely, Corporates, Banks/FIs, FIIs, High Networth Individuals (HNI) and Retail.
  2. These investors invest in the various Types of Mutual Funds.
  3. There are a total of 12 kinds of Funds like Equity Oriented, Debt Oriented and Balanced to name a few.
  1. The AUM of various types of investors varies over time and the AUM in various types of Funds also varies over time. In addition the number of portfolios in a fund changes depending on whether more people are investing in those type of funds or not. The AUM and the number of portfilios are being analysed in this project.

colFmt = function(x,color){
  outputFormat = knitr::opts_knit$get("rmarkdown.pandoc.to")
  if(outputFormat == 'html')
    paste("<font color='",color,"'>",x,"</font>",sep="")
  else
    x
}



aum.df <- as.data.frame(read.xlsx("aum.xlsx", sheetIndex = 1))
aum.df$AUM_Cr <- as.numeric(as.character(aum.df$AUM_Cr))
aum.df$year <- as.numeric(as.character(aum.df$year))
aum.df$Type.2 <- as.character(aum.df$Type.2)
aum.df$mth_yr <- paste0(aum.df$month,"-", aum.df$year)
min_yr <- min(aum.df$year)
max_yr <- max(aum.df$year)

ctr1.df <- as.data.frame(unique(aum.df$Type.2))

str(ctr1.df)

‘data.frame’: 12 obs. of 1 variable: $ unique(aum.df$Type.2): Factor w/ 12 levels “Balanced”,“Debt Oriented”,..: 10 6 2 3 1 7 4 5 11 8 …

disp.table <- function(rx_tbl, lpr){
  
  
  master_tbl <- rx_tbl[,c(2,3,4,5,6,7,8)]
  master_tbl$Percent_AUM <- master_tbl$Percent_AUM/100
  master_tbl$Percent_Folio <- master_tbl$Percent_Folio/100
  disp.caption <- paste0("AUM OF ALL INVESTORS IN ", ctr1.df[lpr,1], " SCHEMES FROM ", min_yr, " TO ", max_yr)
  
  genr.dt <- datatable(master_tbl, filter = "top", options = list(scrollY = '400px'), rownames = FALSE, 
          caption = htmltools::tags$caption(disp.caption, style="color:red")) %>% formatPercentage('Percent_AUM',2)%>% formatPercentage('Percent_Folio',2)
  
  return(genr.dt)
  
}

pandoc.header(colFmt("Section-1: AUM Tables for All Schemes/Types", 'red'), 1, 'setext')

Section-1: AUM Tables for All Schemes/Types

pandoc.header(colFmt( paste("1A. Change in AUM from ", min_yr, " To ", max_yr, "FOR ALL INVESTOR TYPES"), 'blue'), 1, 'setext')

1A. Change in AUM from 2014 To 2019 FOR ALL INVESTOR TYPES

knitr::include_graphics("AUM-ALL TYPES.jpg", dpi = 2)

Insights The AUM of various categories can be seen above.


ctr <- 1
pandoc.header(colFmt( paste("1B. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1B. AUM in Liquid/Money Market Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1
pandoc.header(colFmt( paste("1C. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1C. AUM in Gilt Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1D. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1D. AUM in Debt Oriented Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1E. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1E. AUM in Equity Oriented Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1F. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1F. AUM in Balanced Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1G. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1G. AUM in Gold ETF Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1H. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1H. AUM in ETFs(other than Gold) Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1J. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1J. AUM in Fund of Funds investing Overseas Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1K. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1K. AUM in Remaining Income/ Debt Oriented Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1L. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1L. AUM in Hybrid Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1M. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1M. AUM in Solution Oriented Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
ctr <- ctr +1 
pandoc.header(colFmt( paste("1N. AUM in ", ctr1.df[ctr,1],"Schemes"), 'blue'), 1, 'setext')

1N. AUM in Index Funds Schemes

disp.table(aum.df[aum.df$Type.2 == ctr1.df[ctr,1],], ctr)
pandoc.header(colFmt(paste("Section-2: Change in AUM of corporates from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-2: Change in AUM of corporates from 2014 to 2019

master_tbl <- aum.df[aum.df$Investor.Classification == "Corporates" ,]

#master_tbl <- master_tbl[order(master_tbl$year, master_tbl$AUM_Cr),]

plot.genr <- ggplot(master_tbl, aes(x=factor(year), y= AUM_Cr, fill = factor(Type.2))) + 
    geom_bar(stat='identity')+
    theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20))+ 
  scale_y_continuous(labels = comma) + ggtitle(paste("Corporates Total AUM in all Schemes from ", min_yr, " To ", max_yr )) + 
  xlab('') + ylab('AUM(In Cr)') + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.16,.8)) +  theme(legend.text=element_text(size=15))


plot.genr

pandoc.header(colFmt(paste("Section-3: Change in AUM of High Networth Individuals (HNI's) from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-3: Change in AUM of High Networth Individuals (HNI’s) from 2014 to 2019

master_tbl <- aum.df[aum.df$Investor.Classification == "HNI" ,]

#master_tbl <- master_tbl[order(master_tbl$year, master_tbl$AUM_Cr),]

plot.genr <- ggplot(master_tbl, aes(x=factor(year), y= AUM_Cr, fill = factor(Type.2))) + 
    geom_bar(stat='identity')+
    theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20))+ 
  scale_y_continuous(labels = comma) + ggtitle(paste("HNIs Total AUM in all Schemes from ", min_yr, " To ", max_yr )) + 
  xlab('') + ylab('AUM(In Cr)') + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.16,.8)) +  theme(legend.text=element_text(size=15))


plot.genr

pandoc.header(colFmt(paste("Section-4: Change in AUM of Retail from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-4: Change in AUM of Retail from 2014 to 2019

master_tbl <- aum.df[aum.df$Investor.Classification == "Retail" ,]

#master_tbl <- master_tbl[order(master_tbl$year, master_tbl$AUM_Cr),]

plot.genr <- ggplot(master_tbl, aes(x=factor(year), y= AUM_Cr, fill = factor(Type.2))) + 
    geom_bar(stat='identity')+
    theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20))+ 
  scale_y_continuous(labels = comma) + ggtitle(paste("Retail Total AUM in all Schemes from ", min_yr, " To ", max_yr )) + 
  xlab('') + ylab('AUM(In Cr)') + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.16,.8)) +  theme(legend.text=element_text(size=15))


plot.genr

pandoc.header(colFmt(paste("Section-5: Change in AUM of FII's from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-5: Change in AUM of FII’s from 2014 to 2019

master_tbl <- aum.df[aum.df$Investor.Classification == "FIIs" ,]

#master_tbl <- master_tbl[order(master_tbl$year, master_tbl$AUM_Cr),]

plot.genr <- ggplot(master_tbl , aes(x=master_tbl$year , y= master_tbl$AUM_Cr )) + 
    geom_line(aes(colour=master_tbl$Type.2, group=master_tbl$Type.2), show.legend = TRUE)+
    geom_point(aes(colour=master_tbl$Type.2), size=3, show.legend = TRUE)+ 
    theme(axis.text.x=element_text(angle = 90, hjust = 0))+ 
  scale_y_continuous(labels = comma) 

plot.genr <- ggplot(master_tbl, aes(x=factor(year), y= AUM_Cr, fill = factor(Type.2))) + 
    geom_bar(stat='identity')+
    theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20))+ 
  scale_y_continuous(labels = comma) + ggtitle(paste("FIIs Total AUM in all Schemes from ", min_yr, " To ", max_yr )) + 
  xlab('') + ylab('AUM(In Cr)') + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.86,.8)) +  theme(legend.text=element_text(size=15))


plot.genr

pandoc.header(colFmt(paste("Section-6: Change in AUM of Banks/FI's from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-6: Change in AUM of Banks/FI’s from 2014 to 2019

master_tbl <- aum.df[aum.df$Investor.Classification == "Banks/FIs" ,]

#master_tbl <- master_tbl[order(master_tbl$year, master_tbl$AUM_Cr),]

plot.genr <- ggplot(master_tbl , aes(x=master_tbl$year , y= master_tbl$AUM_Cr )) + 
    geom_line(aes(colour=master_tbl$Type.2, group=master_tbl$Type.2), show.legend = TRUE)+
    geom_point(aes(colour=master_tbl$Type.2), size=3, show.legend = TRUE)+ 
    theme(axis.text.x=element_text(angle = 90, hjust = 0))+ 
  scale_y_continuous(labels = comma) 

plot.genr <- ggplot(master_tbl, aes(x=factor(year), y= AUM_Cr, fill = factor(Type.2))) + 
    geom_bar(stat='identity')+
    theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20))+ 
  scale_y_continuous(labels = comma) + ggtitle(paste("Banks/FIs Total AUM in all Schemes from ", min_yr, " To ", max_yr )) + 
  xlab('') + ylab('AUM(In Cr)') + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.16,.8)) +  theme(legend.text=element_text(size=15))


plot.genr

pandoc.header(colFmt(paste("Section-7: Change in No of Folio and AUM per Folio from ", min_yr, " to ", max_yr), 'red'), 1, 'setext')

Section-7: Change in No of Folio and AUM per Folio from 2014 to 2019

prtflo.percent.df <- data.frame(matrix(ncol = 4, nrow = 0))
colnames(prtflo.percent.df) <- c("tot_AUM", "tot_folio", "year")

for (ctr in min_yr:max_yr) {
  
  prtflo.df <- aum.df[aum.df$year == ctr,]
  
  temp1.df <- tapply(prtflo.df$AUM_Cr, prtflo.df$Investor.Classification,sum)
  temp2.df <- tapply(prtflo.df$No_of_Folio, prtflo.df$Investor.Classification,sum)
  
  temp.df <- as.data.frame(cbind(temp1.df, temp2.df))
  colnames(temp.df) <- c("tot_AUM", "tot_folio")
  temp.df$year <- ctr
  temp.df$Investor.Type <- rownames(temp.df)
  
  prtflo.percent.df <- rbind(prtflo.percent.df, temp.df)
  
}

rownames(prtflo.percent.df) <- rep(1:length(prtflo.percent.df$tot_AUM))
prtflo.percent.df$aum_per_folio <- prtflo.percent.df$tot_AUM/prtflo.percent.df$tot_folio
plot.data.df <- prtflo.percent.df[prtflo.percent.df$Investor.Type == "FIIs",]


pandoc.header(colFmt(paste("7A. Change in No of Folio from ", min_yr, " to ", max_yr), 'blue'), 1, 'setext')

7A. Change in No of Folio from 2014 to 2019

ggplot(prtflo.percent.df, aes(x=prtflo.percent.df$year, y=prtflo.percent.df$tot_folio)) + 
  geom_line(aes(colour=prtflo.percent.df$Investor.Type, group=prtflo.percent.df$Investor.Type), size=1.2)+
  geom_point(aes(colour=prtflo.percent.df$Investor.Type), size=3)+
  theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20)) + scale_y_continuous(labels = comma) +
  ggtitle(paste("Change in AUM per Folio from ", min_yr, " To ", max_yr )) + 
  xlab('Year')+ ylab('AUM per Folio')+
  theme(axis.title.x = element_text(size = 20, face = 'bold'), 
        axis.title.y = element_text(size = 20, face = 'bold')) + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.50,.42)) +
  theme(legend.text=element_text(size=25)) 

pandoc.header(colFmt(paste("7B. Change in AUM per Folio from ", min_yr, " to ", max_yr), 'blue'), 1, 'setext')

7B. Change in AUM per Folio from 2014 to 2019

ggplot(prtflo.percent.df, aes(x=prtflo.percent.df$year, y=prtflo.percent.df$aum_per_folio)) + 
  geom_line(aes(colour=prtflo.percent.df$Investor.Type, group=prtflo.percent.df$Investor.Type), size=1.2)+
  geom_point(aes(colour=prtflo.percent.df$Investor.Type), size=3)+
  theme(axis.text.x=element_text(angle = 90, hjust = 0, face = "bold", size = 20), 
          axis.text.y =element_text(face = "bold", size = 20)) +
  ggtitle(paste("Change in AUM per Folio from ", min_yr, " To ", max_yr )) + 
  xlab('Year')+ ylab('AUM per Folio')+
  theme(axis.title.x = element_text(size = 20, face = 'bold'), 
        axis.title.y = element_text(size = 20, face = 'bold')) + 
  theme(plot.title = element_text(size = 30, face = "bold", hjust = c(0,0)), legend.title = element_blank(), legend.position = c(.50,.42)) +
  theme(legend.text=element_text(size=25))